Intro to disBatch

Efficiently schedule and run parallel jobs

2023-08-06

What is disBatch?

* A tool for running many commands across a pool of nodes on the cluster
* Only requires one resource allocation upfront (saves time in queue)
o Saves time on initializing shared resources (e.g. copying datasets to local)

o Saves time spent on reading concerned emails

Popeye SLURM jobs (Extemal’ inbox x

Nick Carriero <ncarriero@flatironinstitute.org> Tue, Jun 13,
to me, aramis.tanelus v

Dear Aramis,
Over the last few days, you have submitted over 1200 jobs via submitit.

Using submitit is problematic. For instance, around a third of these completed with the state "FAILED'. And the runs currently running are making only modest use
mostly in the 10-20% range.

We would encourage you to consider alternatives where the human is more in the loop---better able to monitor and assess usage.
If you can provide some details as to your workflow and the processing you want to accomplish, we may be able to offer some guidance.
Thanks.

Yours,
-Nick

Running Jobs Queued Jobs

What is disBatch?

* A tool for running many commands across a pool of nodes on the cluster
* Only requires one resource allocation upfront (saves time in queue)
o Saves time on initializing shared resources (e.g. copying datasets to local)
o Saves time spent on reading concerned emails

» Difference between repeatedly sending someone to the store to buy one
thing at a time and handing them a shopping list.

How can | use it?

o |f your workflow is scripted (you can type python my_script.py args... and it
runs) it is trivial

 |f your workflow is not scripted, convert it

Interlude: making Python scripts

Live demo ~ (what could go wrong?)

How can | use it?

o |f your workflow is scripted (you can type python my_script.py args... and it
runs) it is trivial

 |f your workflow is not scripted, convert it
* Create a text file with commands to run each of your jobs, one per line
* | usually make a simple python script for this

e Run disBatch on it

Tips
* You should redirect your logs to make errors and output visible

e Wrap your commands in (...) &path_to_log.log

« Optionally, separate stdout and stderr: (...) 1>out.log 2>err.log

My formula:

for base_config_path in base_config_dir.iterdir():
ft_save_path = model_dir / f'{base_config_path.stem} no _pretrain"
log_name = f'{base_config_path.stem}_no_pretrain. log"
command = (
"python -u -m gerbilizer "
f''——config {base_config_path} "
f''—-—data {finetune_dataset_path} "

f'"-—save-path {ft_save_path}"
)

command = f"({command}) &> {log_dir / log_name}"
lines.append(command)
return lines

commands = get_commands()
with open('"disbatch_script", "w") as ctx:
ctx.write("\n".join(commands))

Tips
* You should redirect your logs to make errors and output visible
e Wrap your commands in (...) &path_to_log.log
« Optionally, separate stdout and stderr: (...) 1>out.log 2>err.log

* You can do everything in one line...

 But if you have to do a lot of setup (loading environments, etc.) it helps to
offload everything into a separate script:

command = (
'source ~/.bashrc && "
"'source ~/venvs/general/bin/activate && "
f'"python —u -m gerbilizer ——config {base_config_path} ——data {pretrain_dataset_path} ——save-path {pt_save

)

command = f"({command}) & {log_dir / log_name}"

command = f"./train_model.sh {base_config_path} {pretrain_dataset_path} {pt_save_path} {log_dir / log_name}"

Scheduling with SLURM

-p gpu ——gpus—per—taskzl ——mem=32GB

aisbatch_lLogs/ disbatch_script
Slurm Args & Options: disBatch Args & Options:
* -p: Partition (gpu, gen, gen, etc.) * -p: Path for saving logs
* -n: Number of tasks running in parallel * -t: max number of tasks running concurrently
per node

 -c: Num cores (per task)

 -c: Number of cores per task (can be < 1)
e -t: Time limit (for everything)

 Path to script

 --mem: RAM (per task)

* --gpus-per-task: bonus points if you can
guess this one

